跳到主要内容

用于模型服务的 ResponsesAgent

MLflow 中的 ResponsesAgent 类提供了一个专用接口,用于服务能够处理具有工具调用功能的结构化响应的生成式 AI 模型。此代理旨在与 MLflow 的服务基础设施无缝协作,同时提供与 OpenAI 风格 API 的兼容性。

概述

MLflow 中的 ResponsesAgent 扩展了 MLflow 的 PyFunc 模型接口,以支持需要高级功能的对话式 AI 应用程序,例如多轮对话、工具调用、多代理编排以及与 OpenAI Responses API 和 MLflow 模型追踪的兼容性。

  • 📦 结构化请求/响应处理
  • 🛠️ 工具调用和函数执行
  • 💬 聊天历史管理
  • 📊 令牌使用跟踪
  • 🤖 OpenAI API 兼容性
  • 🔁 支持返回多个输出消息,包括来自工具调用的中间输出
  • 👥 支持多代理场景
  • 📚 与 MLflow 日志记录、追踪和模型服务的兼容性
  • 🔗 确保与 OpenAI Responses API 的兼容性,以便与下游客户端和 UI 无缝集成

这使其非常适合构建和部署聊天机器人、虚拟助手及其他对话式 AI 应用程序。

主要特性

结构化响应处理

ResponsesAgent 处理符合聊天完成标准的结构化输入和输出

  • 消息:处理具有基于角色的消息(系统、用户、助手)的对话历史
  • 工具调用:支持具有结构化参数的函数调用
  • 使用追踪:监控令牌消耗和模型性能
  • 元数据:捕获附加上下文和配置

OpenAI API 兼容性

ResponsesAgent 在设计时充分考虑了 OpenAI API 兼容性,允许与为 OpenAI 聊天完成 API 构建的现有应用程序和工具无缝集成。这种兼容性延伸到请求格式、响应结构和 API 端点。

MLflow 集成

与 MLflow 生态系统的完全集成,包括

  • 📈 模型追踪和版本控制
  • 🧪 实验管理
  • 🗃️ 模型注册表
  • 🚀 部署选项

基本用法

实现 ResponsesAgent

入门

要创建自己的代理,请继承 mlflow.pyfunc.ResponsesAgent 类并在 predict 方法中实现代理逻辑。实现与框架无关,允许您使用任何代理创作框架。请注意,使用 ResponsesAgent 需要 pydantic>=2。有关示例实现,请参见下面的简单聊天代理工具调用代理

创建代理输出

在实现代理时,您将处理两种主要输出类型:ResponsesAgentResponseResponsesAgentStreamEvent。这些是您应该直接创建的唯一 pydantic 对象。mlflow.types.responses_helpers 中的其余类仅用于验证字典。

如果您想返回不符合标准接口的输出,可以使用 custom_outputs 字段。

以下是一些可用于在 ResponsesAgent 接口中创建常见输出的辅助方法

这是使用带有自定义输出的 ResponsesAgentResponse 的完整工具调用序列示例

from mlflow.pyfunc import ResponsesAgent
from mlflow.types.responses import ResponsesAgentRequest, ResponsesAgentResponse


class SimpleResponsesAgent(ResponsesAgent):
@mlflow.trace(span_type=SpanType.AGENT)
def predict(self, request: ResponsesAgentRequest) -> ResponsesAgentResponse:
return ResponsesAgentResponse(
output=[
self.create_function_call_item(
id="fc_1",
call_id="call_1",
name="python_exec",
arguments='{"code":"result = 4 * 3\\nprint(result)"}',
),
self.create_function_call_output_item(
call_id="call_1",
output="12\n",
),
self.create_text_output_item(
text="The result of 4 * 3 in Python is 12.",
id="msg_1",
),
],
custom_outputs={"key1": "custom-value1"},
)

流式代理输出

对于实时处理,您可以使用流事件而不是返回完整的响应。流式传输允许您在部分结果可用时发送它们,这对于长时间运行的操作或当您想向用户显示进度时非常有用。

基本文本流

要在 ResponsesAgent 接口中流式传输文本,您应该

  • 当分块可用时,产生 response.output_text.delta 事件
    • 它必须有一个 item_id,将相关事件与单个输出项关联起来
  • 产生 response.output_item.done 事件以聚合所有分块
from mlflow.types.responses import ResponsesAgentStreamEvent


class SimpleResponsesAgent(ResponsesAgent):
# ... continuing from above
@mlflow.trace(span_type=SpanType.AGENT)
def predict_stream(
self, request: ResponsesAgentRequest
) -> Generator[ResponsesAgentStreamEvent, None, None]:
# stream text, all with the same item_id
yield ResponsesAgentStreamEvent(
**self.create_text_delta(delta="Hello", item_id="msg_1"),
)
yield ResponsesAgentStreamEvent(
**self.create_text_delta(delta="world", item_id="msg_1"),
)
yield ResponsesAgentStreamEvent(
**self.create_text_delta(delta="!", item_id="msg_1"),
)

# the text output item id should be the same
# item_id as the streamed text deltas
yield ResponsesAgentStreamEvent(
type="response.output_item.done",
item=self.create_text_output_item(
text="Hello world!",
id="msg_1",
),
)
工具调用与流式传输

您还可以流式传输工具调用及其结果。每个工具调用及其输出都作为单独的 response.output_item.done 事件发送。这使得 MLflow 追踪成为可能,并使客户端更容易重构流式消息历史。

from mlflow.types.responses import ResponsesAgentStreamEvent


class SimpleResponsesAgent(ResponsesAgent):
# ... continuing from above
@mlflow.trace(span_type=SpanType.AGENT)
def predict_stream(
self, request: ResponsesAgentRequest
) -> Generator[ResponsesAgentStreamEvent, None, None]:
yield ResponsesAgentStreamEvent(
type="response.output_item.done",
item=self.create_function_call_item(
id="fc_1",
call_id="call_1",
name="python_exec",
arguments='{"code":"result = 4 * 3\\nprint(result)"}',
),
)
yield ResponsesAgentStreamEvent(
type="response.output_item.done",
item=self.create_function_call_output_item(
call_id="call_1",
output="12\n",
),
)
yield ResponsesAgentStreamEvent(
type="response.output_item.done",
item=self.create_text_output_item(
text="The result of 4 * 3 in Python is 12.",
id="msg_1",
),
)

日志记录和服务

使用从代码生成模型方法记录您的代理。这种方法与框架无关,并支持所有创作框架

with mlflow.start_run():
logged_agent_info = mlflow.pyfunc.log_model(
python_model="agent.py", # replace with your relative path to agent code
name="agent",
)

为了方便使用,MLflow 内置了以下功能

  • 自动模型签名推断
    • 将设置符合 ResponsesAgentRequest 和 ResponsesAgentResponse 模式的输入和输出签名
  • 元数据
    • 在记录模型时,{"task": "agent/v1/responses"} 将自动附加到您可能传入的任何元数据中
  • 输入示例
    • 提供输入示例是可选的,默认情况下将使用 mlflow.types.responses.RESPONSES_AGENT_INPUT_EXAMPLE
    • 如果您确实提供了输入示例,请确保它是 ResponsesAgentRequest 模式的字典

要测试 ResponsesAgent,您可以在记录之前和之后传递一个遵循 ResponsesAgentRequest 模式的单个输入字典

import mlflow

# load it back from mlflow
loaded_model = mlflow.pyfunc.load_model(logged_agent_info.model_uri)
loaded_model.predict(
{
"input": [{"role": "user", "content": "what is 4*3 in python"}],
"context": {"conversation_id": "123", "user_id": "456"},
}
)

要服务模型,请参考服务选项以获取详细说明。

示例

简单聊天示例

这是一个调用 OpenAI gpt-4o 模型并带有一个简单工具的代理示例

# uncomment below if running inside a jupyter notebook
# %%writefile agent.py
import os
from typing import Generator

import mlflow
from mlflow.entities.span import SpanType
from mlflow.models import set_model
from mlflow.pyfunc.model import ResponsesAgent
from mlflow.types.responses import (
ResponsesAgentRequest,
ResponsesAgentResponse,
ResponsesAgentStreamEvent,
)
from openai import OpenAI


class SimpleResponsesAgent(ResponsesAgent):
def __init__(self, model: str):
self.client = OpenAI()
self.model = model

@mlflow.trace(span_type=SpanType.AGENT)
def predict(self, request: ResponsesAgentRequest) -> ResponsesAgentResponse:
response = self.client.responses.create(input=request.input, model=self.model)
return ResponsesAgentResponse(**response.to_dict())

@mlflow.trace(span_type=SpanType.AGENT)
def predict_stream(
self, request: ResponsesAgentRequest
) -> Generator[ResponsesAgentStreamEvent, None, None]:
for event in self.client.responses.create(
input=request.input, stream=True, model=self.model
):
yield ResponsesAgentStreamEvent(**event.to_dict())


mlflow.openai.autolog()
agent = SimpleResponsesAgent(model="gpt-4o")
set_model(agent)

工具调用示例

这是一个调用 OpenAI gpt-4o 模型并带有一个简单工具的代理示例

# uncomment below if running inside a jupyter notebook
# %%writefile agent.py
import json
from typing import Any, Callable, Generator
import os
from uuid import uuid4

import backoff
import mlflow
import openai
from mlflow.entities import SpanType
from mlflow.pyfunc import ResponsesAgent
from mlflow.types.responses import (
ResponsesAgentRequest,
ResponsesAgentResponse,
ResponsesAgentStreamEvent,
)
from openai import OpenAI
from pydantic import BaseModel


class ToolInfo(BaseModel):
"""
Class representing a tool for the agent.
- "name" (str): The name of the tool.
- "spec" (dict): JSON description of the tool (matches OpenAI Responses format)
- "exec_fn" (Callable): Function that implements the tool logic
"""

name: str
spec: dict
exec_fn: Callable


class ToolCallingAgent(ResponsesAgent):
"""
Class representing a tool-calling Agent
"""

def __init__(self, model: str, tools: list[ToolInfo]):
"""Initializes the ToolCallingAgent with tools."""
self.model = model
self.client: OpenAI = OpenAI()
self._tools_dict = {tool.name: tool for tool in tools}

def get_tool_specs(self) -> list[dict]:
"""Returns tool specifications in the format OpenAI expects."""
return [tool_info.spec for tool_info in self._tools_dict.values()]

@mlflow.trace(span_type=SpanType.TOOL)
def execute_tool(self, tool_name: str, args: dict) -> Any:
"""Executes the specified tool with the given arguments."""
return self._tools_dict[tool_name].exec_fn(**args)

@backoff.on_exception(backoff.expo, openai.RateLimitError)
@mlflow.trace(span_type=SpanType.LLM)
def call_llm(self, input_messages) -> ResponsesAgentStreamEvent:
return (
self.client.responses.create(
model=self.model,
input=input_messages,
tools=self.get_tool_specs(),
)
.output[0]
.model_dump(exclude_none=True)
)

def handle_tool_call(self, tool_call: dict[str, Any]) -> ResponsesAgentStreamEvent:
"""
Execute tool calls and return a ResponsesAgentStreamEvent w/ tool output
"""
args = json.loads(tool_call["arguments"])
result = str(self.execute_tool(tool_name=tool_call["name"], args=args))

tool_call_output = {
"type": "function_call_output",
"call_id": tool_call["call_id"],
"output": result,
}
return ResponsesAgentStreamEvent(
type="response.output_item.done", item=tool_call_output
)

def call_and_run_tools(
self,
input_messages,
max_iter: int = 10,
) -> Generator[ResponsesAgentStreamEvent, None, None]:
for _ in range(max_iter):
last_msg = input_messages[-1]
if (
last_msg.get("type", None) == "message"
and last_msg.get("role", None) == "assistant"
):
return
if last_msg.get("type", None) == "function_call":
tool_call_res = self.handle_tool_call(last_msg)
input_messages.append(tool_call_res.item)
yield tool_call_res
else:
llm_output = self.call_llm(input_messages=input_messages)
input_messages.append(llm_output)
yield ResponsesAgentStreamEvent(
type="response.output_item.done",
item=llm_output,
)

yield ResponsesAgentStreamEvent(
type="response.output_item.done",
item={
"id": str(uuid4()),
"content": [
{
"type": "output_text",
"text": "Max iterations reached. Stopping.",
}
],
"role": "assistant",
"type": "message",
},
)

@mlflow.trace(span_type=SpanType.AGENT)
def predict(self, request: ResponsesAgentRequest) -> ResponsesAgentResponse:
outputs = [
event.item
for event in self.predict_stream(request)
if event.type == "response.output_item.done"
]
return ResponsesAgentResponse(
output=outputs, custom_outputs=request.custom_inputs
)

@mlflow.trace(span_type=SpanType.AGENT)
def predict_stream(
self, request: ResponsesAgentRequest
) -> Generator[ResponsesAgentStreamEvent, None, None]:
input_messages = [{"role": "system", "content": SYSTEM_PROMPT}] + [
i.model_dump() for i in request.input
]
yield from self.call_and_run_tools(input_messages=input_messages)


tools = [
ToolInfo(
name="get_weather",
spec={
"type": "function",
"name": "get_weather",
"description": "Get current temperature for provided coordinates in celsius.",
"parameters": {
"type": "object",
"properties": {
"latitude": {"type": "number"},
"longitude": {"type": "number"},
},
"required": ["latitude", "longitude"],
"additionalProperties": False,
},
"strict": True,
},
exec_fn=lambda latitude, longitude: 70, # dummy tool implementation
)
]

os.environ["OPENAI_API_KEY"] = "your OpenAI API key"

SYSTEM_PROMPT = "You are a helpful assistant that can call tools to get information."
mlflow.openai.autolog()
AGENT = ToolCallingAgent(model="gpt-4o", tools=tools)
mlflow.models.set_model(AGENT)

服务选项

启动本地服务器进行开发和测试

mlflow models serve -m models:/<model_id> -p 5000

测试已服务的模型

import requests

response = requests.post(
"https://:5000/invocations",
json={"messages": [{"role": "user", "content": "What's the weather like?"}]},
)

print(response.json())

Schema 和类型

ResponsesAgent 适用于请求和响应的结构化模式,请查看ResponsesAgentRequestResponsesAgentResponse以了解详细结构。

# Example Request schema
{
"input": [
{
"role": "user",
"content": "What is the weather like in Boston today?",
}
],
"tools": [
{
"type": "function",
"name": "get_current_weather",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location", "unit"],
},
}
],
}

# Example Response schema
{
"output": [
{
"type": "message",
"id": "some-id",
"status": "completed",
"role": "assistant",
"content": [
{
"type": "output_text",
"text": "rainy",
}
],
}
],
}

故障排除

常见问题

  1. 导入错误:确保所有依赖项都包含在 conda 环境中
  2. 模式验证:验证输入/输出格式是否与预期模式匹配
  3. 模型日志记录问题:使用从代码生成模型功能记录模型
  4. 缺失追踪:通过 mlflow.<flavor>.autolog 或使用 mlflow.start_span 手动追踪来启用追踪

调试

启用追踪进行故障排除,如果您的模型被追踪

import mlflow

# enable autologging if your agent internally uses MLflow tracing-supported libraries internally, such as LangChain, OpenAI, etc.
# mlflow.<flavor>.autolog()

# Test your agent locally before serving
agent = MyResponsesAgent()
agent.predict(
{
"input": [{"role": "user", "content": "what is 4*3 in python"}],
"context": {"conversation_id": "123", "user_id": "456"},
}
)