跳到主要内容

Tracing OpenAI

OpenAI Tracing via autolog

MLflow Tracing 为 OpenAI 提供了自动跟踪功能。通过调用 mlflow.openai.autolog() 函数启用 OpenAI 的自动跟踪,MLflow 将捕获 LLM 调用跟踪并将其记录到活动的 MLflow 实验中。在 Typescript 中,您可以使用 tracedOpenAI 函数来包装 OpenAI 客户端。

import mlflow

mlflow.openai.autolog()

MLflow trace 自动捕获 OpenAI 调用的以下信息

  • 提示和完成响应
  • 延迟
  • 模型名称
  • 附加元数据,例如 temperaturemax_completion_tokens(如果指定)。
  • 如果响应中返回函数调用
  • 内置工具,例如网络搜索、文件搜索、计算机使用等。
  • 如果抛出任何异常
提示

MLflow OpenAI 集成不仅仅是跟踪。MLflow 为 OpenAI 提供了完整的跟踪体验,包括模型跟踪、提示管理和评估。请查看 MLflow OpenAI Flavor 以了解更多信息!

支持的 API

MLflow 支持以下 OpenAI API 的自动跟踪。要请求支持其他 API,请在 GitHub 上提交一个 功能请求

Chat Completion API

Normal函数调用Structured Outputs流式传输异步图像Audio
✅(>=2.21.0)✅ (>=2.15.0)✅(>=2.21.0)--

Responses API

Normal函数调用Structured OutputsWeb SearchFile SearchComputer UseReasoning流式传输异步图像
-

Responses API 自 MLflow 2.22.0 起受支持。

Agents SDK

有关更多详细信息,请参阅 OpenAI Agents SDK Tracing

Embedding API

Normal异步

基本示例

import openai
import mlflow

# Enable auto-tracing for OpenAI
mlflow.openai.autolog()

# Optional: Set a tracking URI and an experiment
mlflow.set_tracking_uri("https://:5000")
mlflow.set_experiment("OpenAI")

openai_client = openai.OpenAI()

messages = [
{
"role": "user",
"content": "What is the capital of France?",
}
]

response = openai_client.chat.completions.create(
model="o4-mini",
messages=messages,
max_completion_tokens=100,
)

流式传输

MLflow Tracing 支持 OpenAI SDK 的流式 API。通过相同的自动跟踪设置,MLflow 会自动跟踪流式响应并在 span UI 中渲染连接的输出。响应流中的实际块也可以在 Event 选项卡中找到。

import openai
import mlflow

# Enable trace logging
mlflow.openai.autolog()

client = openai.OpenAI()

stream = client.chat.completions.create(
model="o4-mini",
messages=[
{"role": "user", "content": "How fast would a glass of water freeze on Titan?"}
],
stream=True, # Enable streaming response
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="")

异步

MLflow Tracing 自 MLflow 2.21.0 起支持 OpenAI SDK 的异步 API。用法与同步 API 相同。

import openai

# Enable trace logging
mlflow.openai.autolog()

client = openai.AsyncOpenAI()

response = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": "How fast would a glass of water freeze on Titan?"}
],
# Async streaming is also supported
# stream=True
)

Function Calling

MLflow Tracing 会自动捕获 OpenAI 模型的函数调用响应。响应中的函数指令将在跟踪 UI 中突出显示。此外,您可以使用 @mlflow.trace 装饰器来注释工具函数,为工具执行创建 span。

OpenAI Function Calling Trace

以下示例使用 OpenAI Function Calling 和 MLflow Tracing for OpenAI 实现了一个简单的函数调用代理。

import json
from openai import OpenAI
import mlflow
from mlflow.entities import SpanType

client = OpenAI()


# Define the tool function. Decorate it with `@mlflow.trace` to create a span for its execution.
@mlflow.trace(span_type=SpanType.TOOL)
def get_weather(city: str) -> str:
if city == "Tokyo":
return "sunny"
elif city == "Paris":
return "rainy"
return "unknown"


tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"parameters": {
"type": "object",
"properties": {"city": {"type": "string"}},
},
},
}
]

_tool_functions = {"get_weather": get_weather}


# Define a simple tool calling agent
@mlflow.trace(span_type=SpanType.AGENT)
def run_tool_agent(question: str):
messages = [{"role": "user", "content": question}]

# Invoke the model with the given question and available tools
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
tools=tools,
)
ai_msg = response.choices[0].message
messages.append(ai_msg)

# If the model request tool call(s), invoke the function with the specified arguments
if tool_calls := ai_msg.tool_calls:
for tool_call in tool_calls:
function_name = tool_call.function.name
if tool_func := _tool_functions.get(function_name):
args = json.loads(tool_call.function.arguments)
tool_result = tool_func(**args)
else:
raise RuntimeError("An invalid tool is returned from the assistant!")

messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": tool_result,
}
)

# Sent the tool results to the model and get a new response
response = client.chat.completions.create(
model="gpt-4o-mini", messages=messages
)

return response.choices[0].message.content


# Run the tool calling agent
question = "What's the weather like in Paris today?"
answer = run_tool_agent(question)

Token 用量

MLflow >= 3.1.0 支持 OpenAI 的 token 使用情况跟踪。每次 LLM 调用的 token 使用情况将记录在 mlflow.chat.tokenUsage 属性中。整个跟踪中的总 token 使用情况可在跟踪信息对象的 token_usage 字段中找到。

import json
import mlflow

mlflow.openai.autolog()

# Run the tool calling agent defined in the previous section
question = "What's the weather like in Paris today?"
answer = run_tool_agent(question)

# Get the trace object just created
last_trace_id = mlflow.get_last_active_trace_id()
trace = mlflow.get_trace(trace_id=last_trace_id)

# Print the token usage
total_usage = trace.info.token_usage
print("== Total token usage: ==")
print(f" Input tokens: {total_usage['input_tokens']}")
print(f" Output tokens: {total_usage['output_tokens']}")
print(f" Total tokens: {total_usage['total_tokens']}")

# Print the token usage for each LLM call
print("\n== Detailed usage for each LLM call: ==")
for span in trace.data.spans:
if usage := span.get_attribute("mlflow.chat.tokenUsage"):
print(f"{span.name}:")
print(f" Input tokens: {usage['input_tokens']}")
print(f" Output tokens: {usage['output_tokens']}")
print(f" Total tokens: {usage['total_tokens']}")
== Total token usage: ==
Input tokens: 84
Output tokens: 22
Total tokens: 106

== Detailed usage for each LLM call: ==
Completions_1:
Input tokens: 45
Output tokens: 14
Total tokens: 59
Completions_2:
Input tokens: 39
Output tokens: 8
Total tokens: 47

Supported APIs:

Token 使用情况跟踪支持以下 OpenAI API

Mode聊天补全ResponsesJS / TS
Normal
流式传输✅(*1)
异步

(*1) 默认情况下,当流式传输时,OpenAI 不会返回 Chat Completion API 的 token 使用情况信息。要跟踪 token 使用情况,您需要在请求中指定 stream_options={"include_usage": True}OpenAI API Reference)。

禁用自动跟踪

可以通过调用 mlflow.openai.autolog(disable=True)mlflow.autolog(disable=True) 来全局禁用 OpenAI 的自动跟踪。