跳到主要内容

MLflow Signature Playground Notebook

下载此 Notebook 欢迎来到 MLflow Signature Playground!这个交互式 Jupyter Notebook 旨在引导您深入了解 MLflow 生态系统中的模型签名基础概念。通过学习 Notebook 中的内容,您将获得定义、强制执行和利用模型签名的实践经验——这是模型管理中至关重要的一环,能够提高可复现性、可靠性和易用性。

模型签名为何重要

在机器学习领域,精确定义模型的输入和输出对于确保顺畅运行至关重要。模型签名充当了模型预期和生成的数据的模式定义,是模型开发者和用户的蓝图。这不仅澄清了预期,还促进了自动验证检查,从而简化了从模型训练到部署的流程。

签名强制执行实操

通过探索此 Notebook 中的代码单元格,您将亲眼目睹模型签名如何强制执行数据完整性、防止常见错误,并在出现差异时提供描述性反馈。这对于维护模型输入的质量和一致性非常有价值,尤其是在模型部署到生产环境时。

深入理解的实用示例

该 Notebook 包含了一系列示例,展示了不同类型和结构的数据,从简单的标量到复杂的嵌套字典。这些示例演示了签名的推断、记录和更新过程,为您提供了对签名生命周期的全面理解。当您与提供的 PythonModel 实例进行交互并调用它们的 predict 方法时,您将学习如何处理各种输入场景——包括必需和可选的数据字段——以及如何更新现有模型以包含详细的签名。无论您是希望改进模型管理实践的数据科学家,还是将 MLflow 集成到工作流程中的开发者,此 Notebook 都是您掌握模型签名的沙盒。让我们深入探索 MLflow 签名的强大功能!

注意:本 Notebook 中展示的许多功能仅在 MLflow 2.10.0 及更高版本中可用。特别是,对 ArrayObject 类型的支持在 2.10.0 版本之前不可用。

python
import numpy as np
import pandas as pd

import mlflow
from mlflow.models.signature import infer_signature, set_signature


def report_signature_info(input_data, output_data=None, params=None):
inferred_signature = infer_signature(input_data, output_data, params)

report = f"""
The input data:
{input_data}.
The data is of type: {type(input_data)}.
The inferred signature is:

{inferred_signature}
"""
print(report)

MLflow 签名中的标量支持

在本教程的这一部分,我们将探讨标量数据类型在 MLflow 模型签名中的关键作用。标量类型,如字符串、整数、浮点数、双精度浮点数、布尔值和日期时间,对于定义模型输入和输出的模式至关重要。这些类型的准确表示对于确保模型正确处理数据至关重要,这直接影响预测的可靠性和准确性。

通过检查各种标量类型的示例,本节演示了 MLflow 如何推断和记录数据的结构和性质。我们将看到 MLflow 签名如何处理不同的标量类型,确保输入模型的数据符合预期的格式。对于任何机器学习实践者来说,这种理解至关重要,因为它有助于准备和验证数据输入,从而实现更顺畅的模型运行和更可靠的结果。

通过实际示例,包括字符串、浮点数和其他类型的列表,我们演示了 MLflow 的 infer_signature 函数如何准确推断数据格式。此功能是 MLflow 处理各种数据输入能力的基础,并构成了机器学习模型中更复杂数据结构的基础。在本节结束时,您将清晰地掌握标量数据在 MLflow 签名中的表示方式以及这对您的 ML 项目的重要性。

python
# List of strings

report_signature_info(["a", "list", "of", "strings"])
The input data: 
['a', 'list', 'of', 'strings'].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[string (required)]
outputs: 
None
params: 
None
python
# List of floats

report_signature_info([np.float32(0.117), np.float32(1.99)])
The input data: 
[0.117, 1.99].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[float (required)]
outputs: 
None
params: 
None
python
# Adding a column header to a list of doubles
my_data = pd.DataFrame({"input_data": [np.float64(0.117), np.float64(1.99)]})
report_signature_info(my_data)
The input data: 
   input_data
0       0.117
1       1.990.
The data is of type: <class 'pandas.core.frame.DataFrame'>.
The inferred signature is:

inputs: 
['input_data': double (required)]
outputs: 
None
params: 
None
python
# List of Dictionaries
report_signature_info([{"a": "a1", "b": "b1"}, {"a": "a2", "b": "b2"}])
The input data: 
[{'a': 'a1', 'b': 'b1'}, {'a': 'a2', 'b': 'b2'}].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
['a': string (required), 'b': string (required)]
outputs: 
None
params: 
None
python
# List of Arrays of strings
report_signature_info([["a", "b", "c"], ["d", "e", "f"]])
The input data: 
[['a', 'b', 'c'], ['d', 'e', 'f']].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[Array(string) (required)]
outputs: 
None
params: 
None
python
# List of Arrays of Dictionaries
report_signature_info(
[[{"a": "a", "b": "b"}, {"a": "a", "b": "b"}], [{"a": "a", "b": "b"}, {"a": "a", "b": "b"}]]
)
The input data: 
[[{'a': 'a', 'b': 'b'}, {'a': 'a', 'b': 'b'}], [{'a': 'a', 'b': 'b'}, {'a': 'a', 'b': 'b'}]].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[Array({a: string (required), b: string (required)}) (required)]
outputs: 
None
params: 
None

理解类型转换:Int 到 Long

在本教程的这一部分,我们将观察 MLflow 模式推断中一个有趣的类型转换方面。在报告整数列表的签名信息时,您可能会注意到推断的数据类型是 long 而不是 int。这种从 int 到 long 的转换不是错误或 bug,而是 MLflow 模式推断机制中有效且有意的类型转换。

为何整数被推断为 Long

  • 更广泛的兼容性: 转换为 long 可确保跨各种平台和系统的兼容性。由于整数 (int) 的大小可能因系统架构而异,使用 long (其大小规范更一致) 可避免潜在的差异和数据溢出问题。
  • 数据完整性: 通过将整数推断为 long,MLflow 可确保可能超出 int 通常容量的大整数值得到准确表示和处理,而不会丢失数据或发生溢出。
  • 机器学习模型中的一致性: 在许多机器学习框架中,尤其是在涉及大型数据集或计算的框架中,长整数通常是数值运算的标准数据类型。推断模式中的这种标准化与机器学习社区中的常见做法一致。
python
# List of integers
report_signature_info([1, 2, 3])
The input data: 
[1, 2, 3].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[long (required)]
outputs: 
None
params: 
None
/Users/benjamin.wilson/repos/mlflow-fork/mlflow/mlflow/types/utils.py:378: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values <https://www.mlflow.org/docs/latest/models.html#handling-integers-with-missing-values>`_ for more details.
warnings.warn(
python
# List of Booleans
report_signature_info([True, False, False, False, True])
The input data: 
[True, False, False, False, True].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[boolean (required)]
outputs: 
None
params: 
None
python
# List of Datetimes
report_signature_info([np.datetime64("2023-12-24 11:59:59"), np.datetime64("2023-12-25 00:00:00")])
The input data: 
[numpy.datetime64('2023-12-24T11:59:59'), numpy.datetime64('2023-12-25T00:00:00')].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
[datetime (required)]
outputs: 
None
params: 
None
python
# Complex list of Dictionaries
report_signature_info([{"a": "b", "b": [1, 2, 3], "c": {"d": [4, 5, 6]}}])
The input data: 
[{'a': 'b', 'b': [1, 2, 3], 'c': {'d': [4, 5, 6]}}].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
['a': string (required), 'b': Array(long) (required), 'c': {d: Array(long) (required)} (required)]
outputs: 
None
params: 
None
python
# Pandas DF input

data = [
{"a": "a", "b": ["a", "b", "c"], "c": {"d": 1, "e": 0.1}, "f": [{"g": "g"}, {"h": 1}]},
{"b": ["a", "b"], "c": {"d": 2, "f": "f"}, "f": [{"g": "g"}]},
]
data = pd.DataFrame(data)

report_signature_info(data)
The input data: 
     a          b                   c                       f
0    a  [a, b, c]  {'d': 1, 'e': 0.1}  [{'g': 'g'}, {'h': 1}]
1  NaN     [a, b]  {'d': 2, 'f': 'f'}            [{'g': 'g'}].
The data is of type: <class 'pandas.core.frame.DataFrame'>.
The inferred signature is:

inputs: 
['a': string (optional), 'b': Array(string) (required), 'c': {d: long (required), e: double (optional), f: string (optional)} (required), 'f': Array({g: string (optional), h: long (optional)}) (required)]
outputs: 
None
params: 
None

签名强制执行

在本教程的这一部分,我们将重点关注签名强制执行在 MLflow 中的实际应用。签名强制执行是一项强大功能,可确保提供给模型的 数据与定义的输入模式一致。此步骤对于防止因数据不匹配或格式不正确而可能出现的错误和不一致至关重要。

通过实际示例,我们将观察 MLflow 在运行时如何强制执行数据与预期签名的符合性。我们将使用 MyModel 类(一个简单的 Python 模型)来演示 MLflow 如何检查输入数据与模型签名的兼容性。此过程有助于保护模型免受不兼容或错误的输入影响,从而提高模型预测的鲁棒性和可靠性。

本节还强调了 MLflow 中精确数据表示的重要性及其对模型性能的影响。通过使用不同类型的数据进行测试,包括不符合预期模式的数据,我们将看到 MLflow 如何验证数据并提供信息性反馈。签名强制执行的这一方面对于调试数据问题和完善模型输入非常有价值,使其成为任何参与部署机器学习模型的人员的关键技能。

python
class MyModel(mlflow.pyfunc.PythonModel):
def predict(self, context, model_input, params=None):
return model_input
python
data = [{"a": ["a", "b", "c"], "b": "b", "c": {"d": "d"}}, {"a": ["a"], "c": {"d": "d", "e": "e"}}]

report_signature_info(data)
The input data: 
[{'a': ['a', 'b', 'c'], 'b': 'b', 'c': {'d': 'd'}}, {'a': ['a'], 'c': {'d': 'd', 'e': 'e'}}].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
['a': Array(string) (required), 'b': string (optional), 'c': {d: string (required), e: string (optional)} (required)]
outputs: 
None
params: 
None
python
# Generate a prediction that will serve as the model output example for signature inference
model_output = MyModel().predict(context=None, model_input=data)

with mlflow.start_run():
model_info = mlflow.pyfunc.log_model(
python_model=MyModel(),
name="test_model",
signature=infer_signature(model_input=data, model_output=model_output),
)

loaded_model = mlflow.pyfunc.load_model(model_info.model_uri)
prediction = loaded_model.predict(data)

prediction
/Users/benjamin.wilson/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
a b c
0 [a, b, c] b {'d': 'd'}
1 [a] NaN {'d': 'd', 'e': 'e'}

我们可以直接从调用 log_model() 后返回的已记录模型信息中检查推断的签名

python
model_info.signature
inputs: 
['a': Array(string) (required), 'b': string (optional), 'c': {d: string (required), e: string (optional)} (required)]
outputs: 
['a': Array(string) (required), 'b': string (optional), 'c': {d: string (required), e: string (optional)} (required)]
params: 
None

我们也可以快速验证记录的输入签名是否与签名推断匹配。在进行此操作时,我们也可以生成输出签名。

注意:建议同时记录输入和输出签名。

python
report_signature_info(data, prediction)
The input data: 
[{'a': ['a', 'b', 'c'], 'b': 'b', 'c': {'d': 'd'}}, {'a': ['a'], 'c': {'d': 'd', 'e': 'e'}}].
The data is of type: <class 'list'>.
The inferred signature is:

inputs: 
['a': Array(string) (required), 'b': string (optional), 'c': {d: string (required), e: string (optional)} (required)]
outputs: 
['a': Array(string) (required), 'b': string (optional), 'c': {d: string (required), e: string (optional)} (required)]
params: 
None
python
# Using the model while not providing an optional input (note the output return structure and the non existent optional columns)

loaded_model.predict([{"a": ["a", "b", "c"], "c": {"d": "d"}}])
a c
0 [a, b, c] {'d': 'd'}
python
# Using the model while omitting the input of required fields (this will raise an Exception from schema enforcement,
# stating that the required fields "a" and "c" are missing)

loaded_model.predict([{"b": "b"}])
---------------------------------------------------------------------------
MlflowException                           Traceback (most recent call last)
~/repos/mlflow-fork/mlflow/mlflow/pyfunc/__init__.py in predict(self, data, params)
  469             try:
--> 470                 data = _enforce_schema(data, input_schema)
  471             except Exception as e:
~/repos/mlflow-fork/mlflow/mlflow/models/utils.py in _enforce_schema(pf_input, input_schema)
  939                 message += f" Note that there were extra inputs: {extra_cols}"
--> 940             raise MlflowException(message)
  941     elif not input_schema.is_tensor_spec():
MlflowException: Model is missing inputs ['a', 'c'].
During handling of the above exception, another exception occurred:
MlflowException                           Traceback (most recent call last)
/var/folders/cd/n8n0rm2x53l_s0xv_j_xklb00000gp/T/ipykernel_97464/1628231496.py in <cell line: 4>()
    2 # stating that the required fields "a" and "c" are missing)
    3 
----> 4 loaded_model.predict([{"b": "b"}])
~/repos/mlflow-fork/mlflow/mlflow/pyfunc/__init__.py in predict(self, data, params)
  471             except Exception as e:
  472                 # Include error in message for backwards compatibility
--> 473                 raise MlflowException.invalid_parameter_value(
  474                     f"Failed to enforce schema of data '{data}' "
  475                     f"with schema '{input_schema}'. "
MlflowException: Failed to enforce schema of data '[{'b': 'b'}]' with schema '['a': Array(string) (required), 'b': string (optional), 'c': {d: string (required), e: string (optional)} (required)]'. Error: Model is missing inputs ['a', 'c'].

更新签名

本教程的这一部分解决了数据和模型的动态特性,重点关注更新 MLflow 模型签名这一关键任务。随着数据集的演变和需求的变更,有必要修改模型的签名以使其与新的数据结构或输入保持一致。能够更新签名是保持模型随时间推移的准确性和相关性的关键。

我们将演示何时需要更新签名,并逐步介绍为现有模型创建和应用新签名的方法。本节强调了 MLflow 在适应数据格式和结构变化方面的灵活性,而无需重新保存整个模型。但是,对于 MLflow 中的已注册模型,更新签名需要重新注册模型以反映已注册版本中的更改。

通过探索更新模型签名的步骤,您将学习如何在手动定义了无效签名,或者在记录模型时未能定义签名但需要更新模型以包含有效签名的情况下,更新模型签名。

python
# Updating an existing model that wasn't saved with a signature


class MyTypeCheckerModel(mlflow.pyfunc.PythonModel):
def predict(self, context, model_input, params=None):
print(type(model_input))
print(model_input)
if not isinstance(model_input, (pd.DataFrame, list)):
raise ValueError("The input must be a list.")
return "Input is valid."


with mlflow.start_run():
model_info = mlflow.pyfunc.log_model(
python_model=MyTypeCheckerModel(),
name="test_model",
)

loaded_model = mlflow.pyfunc.load_model(model_info.model_uri)

loaded_model.metadata.signature
python
test_data = [{"a": "we are expecting strings", "b": "and only strings"}, [1, 2, 3]]
loaded_model.predict(test_data)
<class 'list'>
[{'a': 'we are expecting strings', 'b': 'and only strings'}, [1, 2, 3]]
'Input is valid.'

MLflow 中模式强制执行的必要性

在本教程的这一部分,我们将解决机器学习模型部署中的一个常见挑战:错误消息的清晰度和可解释性。在没有模式强制执行的情况下,模型通常会返回晦涩或误导性的错误消息。这是因为,在没有明确定义的模式的情况下,模型会尝试处理可能与其预期不符的输入,从而导致模糊或难以诊断的错误。

模式强制执行为何重要

模式强制执行充当守门员,确保输入到模型中的数据与预期的格式精确匹配。这不仅降低了运行时错误的发生率,而且还使任何发生的错误都更易于理解和纠正。没有这种强制执行,诊断问题将是一项耗时且复杂的工作,通常需要深入研究模型的内部逻辑。

更新模型签名以获得更清晰的错误消息

为了说明模式强制执行的价值,我们将更新已保存模型的签名,使其与预期的数据结构匹配。此过程包括定义预期的数据结构,使用 infer_signature 函数生成适当的签名,然后使用 set_signature 将此签名应用于模型。通过这样做,我们可以确保任何未来的错误都更具信息量,并与我们预期的数据结构一致,从而简化故障排除并提高模型可靠性。

python
expected_data_structure = [{"a": "string", "b": "another string"}, {"a": "string"}]

signature = infer_signature(expected_data_structure, loaded_model.predict(expected_data_structure))

set_signature(model_info.model_uri, signature)
<class 'list'>
[{'a': 'string', 'b': 'another string'}, {'a': 'string'}]
python
loaded_with_signature = mlflow.pyfunc.load_model(model_info.model_uri)

loaded_with_signature.metadata.signature
inputs: 
['a': string (required), 'b': string (optional)]
outputs: 
[string (required)]
params: 
None
python
loaded_with_signature.predict(expected_data_structure)
<class 'pandas.core.frame.DataFrame'>
      a               b
0  string  another string
1  string             NaN
'Input is valid.'

验证模式强制执行不会允许有缺陷的输入

既然我们已经正确设置了签名并更新了模型定义,让我们确保之前有缺陷的输入类型会引发有用的错误消息!

python
loaded_with_signature.predict(test_data)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
~/repos/mlflow-fork/mlflow/mlflow/pyfunc/__init__.py in predict(self, data, params)
  469             try:
--> 470                 data = _enforce_schema(data, input_schema)
  471             except Exception as e:
~/repos/mlflow-fork/mlflow/mlflow/models/utils.py in _enforce_schema(pf_input, input_schema)
  907         elif isinstance(pf_input, (list, np.ndarray, pd.Series)):
--> 908             pf_input = pd.DataFrame(pf_input)
  909 
~/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
  781                         columns = ensure_index(columns)
--> 782                     arrays, columns, index = nested_data_to_arrays(
  783                         # error: Argument 3 to "nested_data_to_arrays" has incompatible
~/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/pandas/core/internals/construction.py in nested_data_to_arrays(data, columns, index, dtype)
  497 
--> 498     arrays, columns = to_arrays(data, columns, dtype=dtype)
  499     columns = ensure_index(columns)
~/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/pandas/core/internals/construction.py in to_arrays(data, columns, dtype)
  831     elif isinstance(data[0], abc.Mapping):
--> 832         arr, columns = _list_of_dict_to_arrays(data, columns)
  833     elif isinstance(data[0], ABCSeries):
~/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/pandas/core/internals/construction.py in _list_of_dict_to_arrays(data, columns)
  911         sort = not any(isinstance(d, dict) for d in data)
--> 912         pre_cols = lib.fast_unique_multiple_list_gen(gen, sort=sort)
  913         columns = ensure_index(pre_cols)
~/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/pandas/_libs/lib.pyx in pandas._libs.lib.fast_unique_multiple_list_gen()
~/miniconda3/envs/mlflow-dev-env/lib/python3.8/site-packages/pandas/core/internals/construction.py in <genexpr>(.0)
  909     if columns is None:
--> 910         gen = (list(x.keys()) for x in data)
  911         sort = not any(isinstance(d, dict) for d in data)
AttributeError: 'list' object has no attribute 'keys'
During handling of the above exception, another exception occurred:
MlflowException                           Traceback (most recent call last)
/var/folders/cd/n8n0rm2x53l_s0xv_j_xklb00000gp/T/ipykernel_97464/2586525788.py in <cell line: 1>()
----> 1 loaded_with_signature.predict(test_data)
~/repos/mlflow-fork/mlflow/mlflow/pyfunc/__init__.py in predict(self, data, params)
  471             except Exception as e:
  472                 # Include error in message for backwards compatibility
--> 473                 raise MlflowException.invalid_parameter_value(
  474                     f"Failed to enforce schema of data '{data}' "
  475                     f"with schema '{input_schema}'. "
MlflowException: Failed to enforce schema of data '[{'a': 'we are expecting strings', 'b': 'and only strings'}, [1, 2, 3]]' with schema '['a': string (required), 'b': string (optional)]'. Error: 'list' object has no attribute 'keys'

总结:MLflow Signature Playground 的见解和最佳实践

随着我们完成 MLflow Signature Playground Notebook 的旅程,我们对 MLflow 生态系统中的模型签名细节有了宝贵的见解。本教程为您提供了有效管理和利用模型签名所需的知识和实践技能,确保了机器学习模型的鲁棒性和准确性。

关键要点包括准确定义标量类型的重要性、强制执行和遵守模型签名以确保数据完整性的意义,以及 MLflow 在更新无效模型签名方面提供的灵活性。这些概念不仅仅是理论上的,它们是成功部署和管理现实世界中的机器学习模型的基础。

无论您是完善模型的 数据科学家,还是将机器学习集成到应用程序中的开发者,理解和利用模型签名都至关重要。我们希望本教程为您在 MLflow 签名方面打下了坚实的基础,使您能够在未来的 ML 项目中实施这些最佳实践。