跳到主要内容

跟踪 OpenAI

OpenAI Tracing via autolog

MLflow 跟踪 为 OpenAI 提供了自动跟踪功能。通过调用 mlflow.openai.autolog() 函数启用 OpenAI 的自动跟踪,MLflow 将捕获 LLM 调用轨迹并将其记录到当前活跃的 MLflow 实验中。

import mlflow

mlflow.openai.autolog()

MLflow 跟踪自动捕获关于 OpenAI 调用的以下信息

  • 提示和完成响应
  • 延迟
  • 模型名称
  • 附加元数据,例如 temperature, max_tokens, 如果指定。
  • 如果在响应中返回的函数调用
  • 内置工具,例如网络搜索、文件搜索、计算机使用等。
  • 如果引发的任何异常
提示

MLflow OpenAI 集成不仅限于跟踪。MLflow 为 OpenAI 提供了完整的跟踪体验,包括模型跟踪、提示管理和评估。请查看 MLflow OpenAI Flavor 以了解更多信息!

支持的 API

MLflow 支持对以下 OpenAI API 进行自动跟踪。要请求对其他 API 的支持,请在 GitHub 上提交 功能请求

聊天补全 API

普通函数调用结构化输出流式传输异步图像音频
✅(>=2.21.0)✅ (>=2.15.0)✅(>=2.21.0)--

响应 API

普通函数调用结构化输出网络搜索文件搜索计算机使用推理流式传输异步图像
-

响应 API 从 MLflow 2.22.0 开始支持。

代理 SDK

参见 OpenAI 代理 SDK 跟踪 获取更多详细信息。

嵌入 API

普通异步

基本示例

import openai
import mlflow

# Enable auto-tracing for OpenAI
mlflow.openai.autolog()

# Optional: Set a tracking URI and an experiment
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("OpenAI")

openai_client = openai.OpenAI()

messages = [
{
"role": "user",
"content": "What is the capital of France?",
}
]

response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
temperature=0.1,
max_tokens=100,
)

流式传输

MLflow 跟踪支持 OpenAI SDK 的流式传输 API。通过相同的自动跟踪设置,MLflow 自动跟踪流式传输响应并在跨度 UI 中渲染连接后的输出。响应流中的实际块也可在 Event 选项卡中找到。

import openai
import mlflow

# Enable trace logging
mlflow.openai.autolog()

client = openai.OpenAI()

stream = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": "How fast would a glass of water freeze on Titan?"}
],
stream=True, # Enable streaming response
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="")

异步

MLflow 跟踪从 MLflow 2.21.0 版本开始支持 OpenAI SDK 的异步 API。用法与同步 API 相同。

import openai

# Enable trace logging
mlflow.openai.autolog()

client = openai.AsyncOpenAI()

response = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": "How fast would a glass of water freeze on Titan?"}
],
# Async streaming is also supported
# stream=True
)

函数调用

MLflow 跟踪自动捕获 OpenAI 模型返回的函数调用响应。响应中的函数指令将在跟踪 UI 中高亮显示。此外,您可以使用 @mlflow.trace 装饰器注解工具函数,以便为工具执行创建跨度。

OpenAI Function Calling Trace

以下示例演示了如何使用 OpenAI 函数调用和 MLflow 对 OpenAI 的跟踪来实现一个简单的函数调用代理。

import json
from openai import OpenAI
import mlflow
from mlflow.entities import SpanType

client = OpenAI()


# Define the tool function. Decorate it with `@mlflow.trace` to create a span for its execution.
@mlflow.trace(span_type=SpanType.TOOL)
def get_weather(city: str) -> str:
if city == "Tokyo":
return "sunny"
elif city == "Paris":
return "rainy"
return "unknown"


tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"parameters": {
"type": "object",
"properties": {"city": {"type": "string"}},
},
},
}
]

_tool_functions = {"get_weather": get_weather}


# Define a simple tool calling agent
@mlflow.trace(span_type=SpanType.AGENT)
def run_tool_agent(question: str):
messages = [{"role": "user", "content": question}]

# Invoke the model with the given question and available tools
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
tools=tools,
)
ai_msg = response.choices[0].message
messages.append(ai_msg)

# If the model request tool call(s), invoke the function with the specified arguments
if tool_calls := ai_msg.tool_calls:
for tool_call in tool_calls:
function_name = tool_call.function.name
if tool_func := _tool_functions.get(function_name):
args = json.loads(tool_call.function.arguments)
tool_result = tool_func(**args)
else:
raise RuntimeError("An invalid tool is returned from the assistant!")

messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": tool_result,
}
)

# Sent the tool results to the model and get a new response
response = client.chat.completions.create(
model="gpt-4o-mini", messages=messages
)

return response.choices[0].message.content


# Run the tool calling agent
question = "What's the weather like in Paris today?"
answer = run_tool_agent(question)

禁用自动跟踪

可以通过调用 mlflow.openai.autolog(disable=True)mlflow.autolog(disable=True) 全局禁用 OpenAI 的自动跟踪。